第一作者/共同第一作者论文:
[1]Fang CX, Yang LK, Chen WX, Li LL, Zhang PL, Li YZ, He HB, Lin WX*. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. Journal of Experimental Botany, 2020, 71(6):2127-2141.
[2]Fang CX, Zhang PL, Li LL, Yang LK, Mu D, Yan X, Li Z, Lin WX*. Serine hydroxymethyltransferase localized in the endoplasmic reticulum plays a role in scavenging H2O2 to enhance rice chilling tolerance. BMC Plant Biology, 2020, 20: 236.
[3]Fang CX, Li LL, Zhang PL, Wang DH, Yang LK, Reza BM, Lin WX*. Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation. Plant Science, 2019, 278:96-106.
[4]Fang CX, Zhang PL, Jian X, Chen WS, Lin HM, Li YZ, Lin WX*. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Plant Science, 2017, 262:115-126.
[5]Fang CX, Chen WX, Li CX, Jian X, Li YZ, Lin HM, Lin WX*. Methyl-CpG binding domain protein acts to regulate the repair ofcyclobutane pyrimidine dimers on rice DNA. Scientific Reports, 2016, 6:34569.
[6]Fang CX, Yu Y, Chen WS, Jian X, Wang QS, Zheng HP, Lin WX*.Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass. Plant Growth Regulation, 2016, 79(3):265–273
[7]Fang CX, Li YZ, Li CX, Li BL, Ren YJ, Zheng HP, Zeng XM, Shen LH, Lin WX*.Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant, Cell & Environment, 2015, 38(7):1368–1381.
[8]Fang CX, Xu TC, Ye CL, Huang LK, Wang QS, Lin WX*. Method for RNA extraction and cDNA library construction from microbes in crop rhizosphere soil. World Journal of Microbiology and Biotechnology, 2014,30(2):783-789.
[9]Fang CX, Zhuang YE, Xu TC, Li YZ, Li Y, Lin WX*. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. Journal of Chemical Ecology, 2013, 39(2):204-212.
[10]Fang CX, Wang QS, Yu Y, Li QM, Zhang HL, Wu XC, Chen T, Lin WX*. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regulation, 2011, 65(1):1-10.
[11]Fang CX, He HB, Wang QS, Qiu L, Wang HB, Zhuang YE, Xiong J, Lin WX*. Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regulation, 2010, 61(3):277-286.
[12]Fang CX, Wu XC, Zhang HL, Xiong J, Wu WX, Lin WX*.UV-induced differential gene expression in rice cultivars analyzed by SSH. Plant Growth Regulation, 2009, 59(3):245-253.
[13]Fang CX, Xiong J, Qiu L, Wang HB, Song BQ, He HB, Lin RY, Lin WX*. Analysis of gene expressions associated with increased allelopathy in rice induced by exogenous salicylic acid. Plant Growth Regulation, 2009, 57(2):163-172.
[14]Wu XC, Fang CX(co-fist author), Chen JY, Wang QS, Chen T, Lin WX*, Huang ZL. A Proteomic analysis of leaf responses to enhanced ultraviolet-B radiation in two rice (Oryza sativa L.) cultivars differing in UV sensitivity. Journal of Plant Biology, 2011, 54(4):251-261.
[15]方长旬, 王清水, 余彦, 黄力坤, 吴杏春, 林文雄*.硅及其吸收基因(Lsi1)调节水稻耐UV-B辐射的作用.作物学报, 2011,37(6):1005-1011.
[16]方长旬, 王清水, 余彦, 罗美蓉, 黄力坤, 熊君, 沈荔花, 林文雄*. 不同胁迫条件下化感与非化感水稻PAL多基因家族的差异表达.生态学报, 2011, 31(16): 4760-4767.
[17]方长旬, 许铁城, 黄力坤, 王清水, 何海斌, 林文雄*.水稻品种“Lemont”响应低氮培养及共培稗草的上调表达基因分析.中国生态农业学报, 2012, 20(9):1185−1190.
通讯作者/共同通讯作者论文:
[1] Zhang HB, Mu D, Li YS. Li XL , Yan X, Li K, Jiao YY, Li JY, Lin HM, Lin WX, Fang CX*. Glutathione S-transferase activity facilitates rice tolerance to the barnyard grass root exudate DIMBOA. BMC Plant Biology, 2024, 24: 117.
[2] Boorboori MR*, Lin WX, Fang CX*. Comparison of Japonica and Indica Rice (Wild type and Lsi1 transgenic) in the use of silicon in reducing arsenic toxicity. Silicon, 2023, 15:6199-6214.
[3] Liu YZ, Liu Y, Zeng CL,Wang JY, Nyimbo WJ, Jiao YY, Wu LK*, Chen T, Fang CX*, LinWX*. Intercropping with Achyranthes bidentata alleviates Rehmannia glutinosa consecutive monoculture problem by reestablishing rhizosphere microenvironment. Frontiers in Plant Science, 2022, 13:1041561.
[4] Li JY, Lin SX, Ma HY, Wang YP, He HB*, Fang CX*. Spatial-temporal distribution of allelopathic rice roots in paddy soil and its impact on weed-suppressive activity at the seedling stages. Frontiers in Plant Science, 2022, 13:940218.
[5] Li Z, Muhammad UK, Yan X, Mu D, Xie YB, Muhammad W, Wu X, Letuma P, Fang CX*, Lin WX*. Deciphering the molecular mechanisms of chilling tolerance in Lsi1-overexpressing rice. International Journal of Molecular Sciences, 2022, 23, 4667.
[6] 杨陆可, 王浩, 高钰杰, 严雪, 母丹, 林文雄*,方长旬*.水稻OsMYB57基因表达的调控与其化感抑草作用. 中国生态农业学报(中英文), 2022, 30(2): 236-247.
[7] Lin ZM, Muhammad UK, Fang CX*, Lin WX*. Crop allelopathy types: Current research status and prospects in China. Chinese Journal of Eco-Agriculture, 2022, 30(3): 343−355
[8] Boorboori MR, Li Z, Yan X, Dan M, Zhang Z, Lin W, Fang CX*. Comparison of silicon-evoked responses on arsenic stress between different Dular rice genotypes. Plants, 2021, 10:2210.
[9] Boorboori MR, Lin WX, Jiao YY, Fang CX*. Silicon modulates molecular and physiological activities in Lsi1 transgenic and wild rice seedlings under arsenic stress. Agronomy, 2021, 11: 1532.
[10] Boorboori MR, Gao YJ, Wang H, Fang CX*. Usage of Si, P, Se, and Ca Decrease Arsenic Concentration/Toxicity in Rice, a Review. Applied Sciences, 2021, 11(17): 8090.
[11] 李兰兰,母丹,严雪,杨陆可,林文雄*,方长旬*.OsPAL2;3对水稻化感抑制稗草能力的调控作用. 作物学报,2021, 47(2):197-209.
[12] Boorboori MR, Lin WX*, Fang CX*. The effects of arsenic and silicon on the oxidative and non-oxidative enzymes in the seedlings of three different rice (Oryza sativa L.) varieties in different growth periods. Applied Ecology and Environmental Research, 2020, 18(4):5263-5278.
[13] Boorboori MR, Lin WX*, Zhang WS, Fang CX*. The role of silicon to increase arsenic tolerance in rice (oryza sativa L.) seedlings by reinforcing anti-oxidative defense. Biagro, 2020,32(3): 159-168
[14] Zhang Q, Zheng XY, Lin SX, Gu CZ, Li L, Li JY, Fang CX*, He HB*. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Rice, 2019, 12: 30.
[15] Lin HM, He JY, Lin WW, Li YZ, Fang CX*, Lin WX*. Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si. Plant Growth Regulation, 2018, 86(2):149-157.