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Abstract: Background: The BLAST (Basic Local Alignment Search Tool) algorithm has been 
widely used for sequence similarity searching. Analogously, the public phenotype images must be 
efficiently retrieved using biological images as queries and identify the phenotype with high 
similarity. Due to the accumulation of genotype-phenotype-mapping data, a system of searching 
for similar phenotypes is not available due to the bottleneck of image processing. 

Objective: In this study, we focus on the identification of similar query phenotypic images by 
searching the biological phenotype database, including information about loss-of-function and 
gain-of-function. 

Method: We propose a deep convolutional autoencoder architecture to segment the biological 
phenotypic images and develop a phenotype retrieval system to enable a better understanding of 
genotype–phenotype correlation. 

Results: This study shows how deep convolutional autoencoder architecture can be trained on 
images from biological phenotypes to achieve state-of-the-art performance in a phenotypic images 
retrieval system. 

Conclusion: Taken together, the phenotype analysis system can provide further information on the 
correlation between genotype and phenotype. Additionally, it is obvious that the neural network 
model of image segmentation and the phenotype retrieval system is equally suitable for any 
species, which has enough phenotype images to train the neural network. 

Keywords: Biological phenotype similarity searching, convolutional encoder-decoder architecture, segmentation of biological 
images, phenotypic image retrieval system. 

1. INTRODUCTION 

Phenotype-driven studies, such as gain-of-function and 
loss-of-function mutation, can provide important clues in 
relation to gene function, since the phenotype changes are 
determined by the alterations in the genotype [1]. With the 
growth in genotype-phenotype studies [2], it is possible to 
infer the potential gene function for query phenotypic images 
by examining public phenotypic images with a known 
function. The BLAST (Basic Local Alignment Search Tool) 
algorithm has been widely used for searching sequence  
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similarities to study the genotype of a query sequence [3, 4], 
and has been cited over 67,000 times. Analogously, the lines, 
including similar phenotypic images, might be involved in 
the same pathway with the mutant-owned query phenotypic 
images. To the best of our knowledge, in contrast to 
sequence comparison, a phenotype comparison and retrieval 
system is still elusive at present. Therefore, it is necessary to 
construct a phenotype retrieval system to systematically 
search the phenotype database with a series of query images 
for the scientific community. To fill the gap in biological 
phenotype similarity searching, we developed a deep 
convolutional autoencoder architecture, which provides a 
way to find potential candidate genes involved in the same 
pathway. 

Similar to other general neural network models, the 
autoencoder has an input layer, hidden layers and an output 
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layer [5]. The entire autoencoder is symmetrical about the 
innermost hidden layer in general. The middle layer is called 
the presentation layer. The encoder maps the input layer to 
the representation layer. On the contrary, the part from the 
representation layer to the output layer, which reconstructs 
the input layer is called the decoder.  

The number of neurons is reduced from the input layer to 
the presentation layer, while the number of neurons from the 
presentation layer to the output layer is increased since the 
structure of the encoder is symmetrical [5]. When we apply 
the autoencoder method to solve image-processing problems, 
it usually replaces the fully connected layer of the 
autoencoder with convolutional neural networks. This type 
of autoencoder is called the convolutional autoencoder [6]. 
When the pooling layer is added to the convolution layer, the 
dimension of the input image data will be reduced. This 
process enables the autoencoder to obtain more efficient 
representation of the encoder, which generates more accurate 
representation of the feature space. Autoencoder uses the 
upsampling method and deconvolution operation in the 
process of decoding. In 2014, fully convolutional networks 
(FCN) popularized convolutional autoencoder architectures 
for dense predictions without any fully connected layers [7]. 
Most of the subsequent methods used this paradigm to 
perform semantic segmentation. The encoder-decoder is one 
of the architectures for semantic segmentation. The encoder 
gradually reduces the spatial dimension with pooling layers 
and the decoder gradually recovers the object details and 
spatial dimensions. Shortcut connections between the 
encoder and decoder ensure the better reconstruction of 
objects.  

Though the great needs of biological phenotype 
similarity searching make the development of the system 
particularly rewarding, it faces two challenges for the 
phenotypic retrieval system. The first is how to effectively 
separate the plants from the background. In this study, we 
solve this problem by using a deep convolutional auto-
encoder architecture. Based on the structure of SegNet [8], 
we propose a neural network model to segment phenotypic 
images in Arabidopsis, which is referred to as TAIR-Net. 
The results show that deep neural network architectures are 

successful in segmenting biological images. Another key 
challenge for the phenotypic retrieval system is to design an 
effective search algorithm to match the query images with 
databases including the most similar biological images. At 
present, these are two types of image retrieval technology, 
text-based image retrieval (TBIR) [9] and content-based 
image retrieval (CBIR) [10]. We adopt CBIR for content-
based visual information retrieval, which can avoid the time 
consuming manual annotation of textual information to 
describe each biological image. Extracting a feature vector 
module is essential for CBIR. We build a library for these 
feature vectors and use the deep convolutional autoencoder 
to extract the features from the images.  

In this study, we develop a phenotype retrieval system 
which can provide potential functional information on genes 
in the same pathway related to the query images. Although 
we have chosen Arabidopsis as the reference phenotype 
images for training, the method can be applied to any species 
with a large number of phenotypic images. Thus, this study 
provides a powerful tool to better understand large-scale 
phenotypic data. 

2. METHODS 

2.1. Data Sets for Preprocessing 

In order to search for the genotype-phenotype-mapping 
database with a query images, we collect the loss-of function 
and gain-of-function line data from the well-known TAIR 
database based on the literature curation [2] and the 
Arabidopsis phenome database including phenotypes from 
Ds tagging line, activation tagging line, and Fox-hunting line 
[1] to set up a biologically similar phenotype retrieval 
system.  

2.2. Image Segmentation by K-means in L*a*b* Color 
Space 

Firstly, we used the K-means algorithm for pre-
segmentation. Then, we selected the better segmentation and 
corresponding original picture to train the deep 
convolutional autoencoder. Finally, we used the trained 
autoencoder to segment the whole dataset (Fig. 1). In a 

 
Fig. (1). The flow chart of image segmentation. Firstly, we used the K-means algorithm to perform segmentation. Then, we selected the 
better segmentation and the corresponding original picture to train the autoencoder. Finally, we used the autoencoder model to perform 
segmentation on the whole dataset.  
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typical phenotypic dataset on plants, the majority of the 
pixels can be classified into the following types: plant, soil, 
flowerpots or culture medium, and tags, etc. The image 
segmentation system can divide the images into a number of 
classes according to the defined characteristics. Hence, it is 
important to retain boundary information in the extracted 
image representation. The L*a*b* color space is a color 
model developed by the International Commission on 
Illumination (CIE) [11]. An RGB color space can be 
transformed into an L*a*b* color space, which makes it 
easier to use the clustering algorithm to classify the desired 
color. In the L*a*b* color space, the color information is 
deposited in ‘*a*b*’ space. The input for K-means is a 
combination of (a*, b*). The colors in 'L*a*b*' space were 
classified using K-means clustering. Every pixel in the 
image was labeled using the results from K-means.  

2.3. Deep Convolutional Autoencoder for Image 
Segmentation 

On the basis of SegNet [8], we propose a neural network 
model for the segmentation of the phenotypic images, which 
is referred to as TAIR-Net, and the structure is shown in Fig. 
(2) and Table 1. The training data for TAIR-Net were 
selected from the best segmentations using the K-means 
algorithm. We implement the algorithm on the Keras 
framework using the deep convolutional autoencoder model 
[12]. The initial values of the encoder and decoder are 
initialized with He's weight initialization (https://keras.io/). 
In addition, TAIR-Net uses binary cross-entropy loss as the 
loss function. We tested both binary cross entropy and mean 
square error in our model and found that using binary cross 
entropy as a loss function in our model results in a smaller 
training loss. The loss in the autoencoder should capture the 
discrepancy between the decoded images and the original 

images. Thus, we used per-pixel binary cross entropy loss in 
this study. Stochastic gradient descent (SGD) with a 
Nesterov momentum of 0.9 was used to train TAIR-Net. Its 
initial learning rate is 0.01 and decay of 1E-6 over each 
update. The mini-batch size is 16 and the total epochs are 30. 

2.4. Content-based Image Retrieval 

These are four distinct parts in the image retrieval 
system: (i) dividing distinct areas in the image, (ii) feature 
extraction which determines the features that need to be 
extracted, (iii) feature representation which can be the largest 
region or a proportion of the colors in the region, (v) query 
processing. With the development of deep learning and deep 
neural networks, the features can be extracted from the data 
through the neural network model. In this study, we also use 
the convolutional autoencoder to train the image data and 
build the image feature library. In 2012, Krizhevsky et al. 
characterized the global image with an intermediate node of 
autoencoders for image retrieval [13]. In this study, 
following the methods proposed by Krizhevsky [13], we 
build a deep convolutional autoencoder model, referred to as 
Search-Net, to extract the features of an image after image 
segmentation by TAIR-Net. The feature vector is adopted to 
establish the phenotype feature library. The cosine similarity 
between the feature vectors characterizes the degree of 
association between the query image and the phenotype 
feature library. A small cosine similarity presents a similar 
phenotype. Fig. (3) and Table 2 show the architecture of 
Search-Net. During the training of Search-Net, the same 
plant might be regarded as different objects due to the angle 
of the camera, light intensity, growth stage, object 
concealment and other issues. In addition, plants with the 
same  genetic  background will show different phenotypes in 

 

Fig. (2). Neural network model for segmentation using deep convolutional encoder-decoder architecture. The left panel is the image for 
segmentation. The middle panel is the neural network model for segmentation model, which is a deep convolutional autoencoder model with 
a symmetrical structure. The autoencoder uses the structure of skip-connect. The convolutional parameters for the first layer of the input and 
the last layer of the convolutional parameters were merged. The input of the second layer was fused with the parameters of the reciprocal 
second layer, and so on. The right panel is the segmentation. 
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Table 1. The 38-layer architecture of TAIR-Net. 

Layer Type Filter Kernel Size 

0 input shape=(256,256,3)  

1 convolutional 64 3x3 

2 convolutional 64 3x3 

3 max pooling  pool_size(2,2) 

4 convolutional 128 3x3 

5 convolutional 128 3x3 

6 max pooling  pool_size(2,2) 

7 convolutional 256 3x3 

8 convolutional 256 3x3 

9 max pooling  pool_size(2,2) 

10 convolutional 512 3x3 

11 convolutional 512 3x3 

12 Dropout  dropout_rate=0.5 

13 max pooling  pool_size(2,2) 

14 convolutional 1024 3x3 

15 convolutional 1024 3x3 

16 up sampling  size(2,2) 

17 convolutional 512 2x2 

18 merge�12,17�   

19 convolutional 512 3x3 

20 convolutional 512 3x3 

21 up sampling  size(2,2) 

22 convolutional 256 2x2 

23 merge�8,22�   

24 convolutional 256 3x3 

25 convolutional 256 3x3 

26 up sampling  size(2,2) 

27 convolutional 128 2x2 

28 merge�5,27�   

29 convolutional 128 3x3 

30 convolutional 128 3x3 

31 up sampling  size(2,2) 

32 convolutional 64 2x2 

33 merge�3,32�   

34 convolutional 64 3x3 

35 convolutional 64 3x3 

36 convolutional 3 3x3 

37 convolutional 3 1x1 
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Fig. (3). The training and retrieval architecture of the whole phenotype retrieval system. Box 1 presents the TAIR-Net training process using 
the deep convolutional autoencoder model; Box 2 presents the Search-Net training process. Box 3 presents the query image, with the 
background removed using TAIR-Net. Box 4 presents the query image after segmentation was turned into a feature vector. Box 5 shows that 
the feature vectors from the query image were matched with the features vector in the phenotype feature library. According to cosine 
similarity, the possible candidates were inferred. 

Table 2. The 24-layer architecture of Search-Net. 

Layer Type Filter Kernel Size 

0 input shape=(256,256,3)  

1 convolutional 64 3x3 

2 convolutional 64 3x3 

3 max pooling  pool_size(2,2) 

4 convolutional 128 3x3 

5 max pooling  pool_size(2,2) 

6 convolutional 256 3x3 

7 max pooling  pool_size(2,2) 

8 convolutional 512 3x3 

9 max pooling  pool_size(2,2) 

10 convolutional 512 3x3 

11 max pooling  pool_size(2,2) 

12 convolutional 512 3x3 

13 up sampling  size(2,2) 

14 convolutional 512 3x3 

15 up sampling  size(2,2) 

16 convolutional 256 3x3 

17 up sampling  size(2,2) 

18 convolutional 128 3x3 

19 up sampling  size(2,2) 

20 convolutional 64 3x3 

21 up sampling  size(2,2) 

22 convolutional 64 3x3 

23 convolutional 3 3x3 
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Fig. (4). Four similar color spaces, including HSV, L*a*b*, rg chromaticity and XYZ were compared using the K-means algorithm with the 
same parameters. According to the effect of segmentation, we conclude that the L*a*b* color space achieved the best performance.  

 
Fig. (5). Pre-segmentation performance using different clusters. Background information was introduced using K=2 for segmentation. The 
leaves are using K = 4 or more. K = 3 is more appropriate for image segmentation.  
 
different physiological, biotic and abiotic conditions, which 
makes it difficult to match. In order to overcome these 
challenges, we adopt data augmen-tation technology. We use 
a combination of different transformations such as rotation, 
flip, zoom, scale, contrast, and color to increase the 
phenotype features, enabling the deep neural networks to 
learn more image invariance features during training. 

3. RESULTS AND DISCUSSION 

3.1. The K-means Algorithm for Phenotype Image Pre-
segmentation to Train the Autoencoder 

Background removal is a preprocessing task during 
image segmentation. If only the autoencoder model is 
adopted for image segmentation, the image segmentation 
will have to be done manually for the training data set, which 
is time-consuming and laborious. If only the K-means 
algorithm is used for segmentation, there is no need to 
perform manual segmentation, however the effect of the K-
means algorithm is not as good as that of the autoencoder 
model. Therefore, we combine the advantages of the K-
means algorithm and the autoencoder model in this study.  

Any color information expressed in the RGB color space 
can be described and mapped in the L*a*b* color space. The 
K-means algorithm is an unsupervised learning algorithm, 

which assumes that the clustering structure can be 
characterized by a set of prototypes [11]. In this study, we 
compared four similar color spaces, namely HSV, L*a*b*, 
rg chromaticity and XYZ. Using the K-means algorithm, we 
obtained different segmentation results from the four color 
spaces using the same parameters. After manually checking a 
large number of segmentations, we found that the L*a*b* 
color space had the best performance (Fig. 4).  

We also tested different Ks and manually judged the 
effect and found that K = 3 is more appropriate to use for 
training the autoencoder. Fig. (5) shows a randomly selected 
segmentation using different clusters. As can be seen from 
the figure, segmentation using K=2 introduced part of the 
background information. However, if K = 4 or 5, the leaves 
will be split. Based on these results, the best pre-
segmentation performance is obtained when k =3 since the 
culture medium, soil and label are the three major factors 
which can disturb the performance of segmentation. 

In this study, TAIR-Net has 38 neural network layers. 
For a 256 x 256 image, a batch size of 32 will take up 12.6G 
of graphic memory. Thus, these phenotype images were 
reshaped into 256 x 256 sizes in this study to avoid out of 
memory (OOM) error due to higher resolution. Since our 
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source code has been released, the user can select a higher 
resolution to obtain better results. 

We first converted all the images in the dataset into the 
L*a*b* color space and clustered the objects into three 
clusters using the K-means algorithm, and then detected the 
most green area as the segmentation result of the image. Our 
dataset was not a benchmark dataset. Thus, we need to assess 
the effect of segmentation manually. We used 11 numerical 
intervals (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) to 
quantify the segmentation effect according to three different 
individuals conducting three independent rating assessments. 
In total, there were 1338 pictures giving a median score of 
70 points or more in this study. In the original data, these are 
2,341 phenotype images of different image sizes. After the 
initial division of the K-means algorithm, there were 1,338 
images, which is a good segmentation effect. The results of 
image segmentation using the K-means algorithm is vis-

ualized in Fig. (6). Then we selected the image segmentation 
as training data.  

3.2. Deep Convolutional Autoencoder for Segmentation 

The major interference factor for biological phenotypic 
images includes culture medium, soil and label, etc. How-
ever, there are other factors which may interfere with the 
effect of image segmentation. Thus, part image seg-
mentation using the K-means algorithm in the L*a*b* color 
space results in incomplete segmentation. The autoencoder 
model segments images for the training data manually. 
However, the disadvantage of this method is that it is time-
consuming. In order to address this issue, we use the K-
means algorithm to combat the disadvantages of manual 
segmentation. Pre-segmentation from K-means is sufficient 
as the training data for the autoencoder model. Finally, we 
used the trained autoencoder for all the image segmentation. 

 
Fig. (6). Removing the background from the image using the L*a*b* color space by the K-means algorithm. The left-most image is the 
original image for segmentation, the second image is the image converted to the L*a*b* space. The third image is divided into three classes 
using the K-means algorithm. The last one shows the effect of image pre-segmentation. 

 
Fig. (7). A comparison between the K-means algorithm and TAIR-Net segmentation. TAIR-Net segmentation scores were significantly 
higher than the K-means algorithm according to the manual evaluation as shown in the histogram. 
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On the basis of SegNet [8], we propose a neural network 
model for biological phenotypic image segmentation, which 
is referred to as TAIR-Net. In total, 1,338 images with the 
best segmentation from the K-means algorithm are used as 
the training sample as TAIR-Net training data. The effects of 
the K-means algorithm and TAIR-Net segmentation were 
evaluated manually. The histogram comparing the K-means 
algorithm and the TAIR-Net segmentation is shown in Fig. 
(7), which shows that TAIR-Net segmentation scores are 
significantly higher than the K-means algorithm. The results 
suggest that we can obtain great improvement during 
phenotypic image segmentation (Fig. 8). This study 
addresses not only the defects of the K-means algorithm but 
the small amount of sample data for deep learning training. 
The segmented images in Fig. (9) indicate that TAIR-Net 
could achieve better results in different growth stages. 

3.3. The Architecture of the Feature Extraction System  

TBIR is one image retrieval technology, which has a fast 
retrieval speed, is convenient to operate and is easy to 
implement. However, TBIR cannot be updated auto-
matically. The time consuming manual annotation also limits 

the application of TBIR. Thus, we use CBIR in the image 
retrieval system. The extracting feature vector module is 
essential for CBIR. After the training of TAIR-Net is 
completed, all the remaining images are processed by TAIR-
Net and are regarded as Search-Net training data. Both 
TAIR-Net and Search-Net are deep convolutional autoen-
coder models and use binary cross-entropy loss as the loss 
function. We used the AdaDelta optimizer with a learning 
rate of 4.0 to train the Search-Net. The mini-batch size is 32 
and the total epoch is 400. This kind of retrieval method 
extracts information from the image content, using the image 
feature to index and retrieve, so that the retrieval is more 
efficient (Fig. 10). When an image with the same content has 
different forms, [such as pictures for the same object taken 
from different angles, using CBIR technology, these images 
can be retrieved as well. 

3.4. Example of a Matching Reference Biological Pheno-
type Database 

We selected 50 query images as the test dataset, which 
included a known gene ontology (GO). The remaining 
images were adopted to establish the feature extract system, 

 

Fig. (8). A comparison of the K-means algorithm segmented image and the TAIR-Net segmented image. The images on the upper left and 
lower left are the original images. The upper right is the image segmentation by the K-means algorithm, and the lower right is the image 
segmentation using TAIR-Net. 
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as described in this study. After all the cosine similarity 
values were calculated and the query results were sorted in 
ascending order, Search_Net returned the most similar 
phenotypes images and corresponding GO. We regarded the 
first five as possible candidates. Of the 50 tested images, 
there were 42 query images including the same GO with 

respective candidate phenotypes images, which suggests the 
validity of the image query (Fig. 11).  

To demonstrate the application of content-based image 
retrieval, we used the query dataset from the publication of 
the ago1-27 mutant [14], which is involved in the microRNA 

 

Fig. (9). The segmented images in different stages. TAIR-Net can achieve better result in different growth stages in Arabidopsis. 

 
Fig. (10). The architecture of the feature extraction system. This diagram was adopted to demonstrate the Search-Net training process. 
Search-Net consists of encoders and decoders. The input part of Search-Net was image segmentation from TAIR-Net, which was loaded into 
the encoder. The output from the decoder was an image, which was similar to the original pictures. The black arrow indicates that the layer 
was a convolution layer, the orange color represents the MaxPooling layer. The green color represents the upper sampling layer. The feature 
vector was stored in the phenotype feature library as soon as the Search-Net training was completed. 
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pathway. When the user submits an image of the mutant to 
the retrieved system, the background information from the 
ago1-27 mutant will be removed by TAIR-Net and will be 
coded into a feature vector through the encoder of Search-

Net. Lastly, the retrieval system finds the most similar 
feature from the reference library based on cosine similarity 
and returns the most related images corresponding to these 
features (Fig. 12). The top match retrieved by the system 
includes one mutant line (Fig. 6B), which encodes a member 
of the plant transcription factor (AT1G53230) which 
includes Teosinte branched 1, Cycloidea 1, and proliferating 
cell nuclear antigen (PCNA) factors. The gene is involved in 
the heterochronic regulation of leaf differentiation and is 
targeted by miRNA-319. The above example suggests that 
searching using the ago1-27 mutant returns functionally 
related mutants. In summary, the above example shows that 
the retrieved system is able to detect the functional relation 
between similar phenotypes. 

Importantly, the user should be aware of the limitations 
of this method. Firstly, to obtain meaningful results, a deluge 
of high-resolution reference phenotype images is essential 
for the training data. Advances in automated high-throughput 
imaging technologies can solve this challenge, such as 
unmanned aerial vehicles [15, 16], LemnaTec (http://www. 
lemnatec.com/) and PSI (http://plantphenotyping.com/), 
which can generate a massive amount of phenotype images. 
In the future, reference images which come from natural 
genetic variation [17] can also be included in this study. 
Another limitation is the randomness for the query image, 
such as different environmental effects, varying growth 
stages, different scales and different capture perspectives 
which can disturb the accuracy of the comparison. For the 
present, we have adopted data augmentation, which resulted 
in substantial improvements. However, data augmentation 
requires more computer resources and time for training.  

 
Fig. (11). Validity of the image query matching reference biological phenotype database. Of the 50 tested query images, there are 42 images 
including the same GO with respective candidates. Number of matched GO and images were plotted on the x-axis and y-axis, respectively. 

 

Fig. (12). Example of matching reference biological phenotype 
database. The image labeled F01901 was the query image and the 
phenotype retrieval system returned one image labeled F18202 as 
the potential candidate. By analyzing their corresponding GO, we 
found that two genes included the same GO number. 
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3.5. Computation Time for the Framework 

TAIR-Net was trained on a computer with a dual 
GTX1080 graphics card, i7-6700k, 32G RAM. The 
batch_size of TAIR-Net is set to 16, it trained 200 epochs 
and took about 5 hours. The batch_size of Search_net was 
set to 32 and it trained 200 epochs, taking about 3 hours. The 
K-means algorithm, TAIR-Net and Search_Net were tested 
on a single GTX1070 graphics card, i7-3770, 24 GRAM 
computer. K-means took around 320 seconds to segment all 
the 2341 pictures. TAIR-Net took about 2s to segment a 
single picture and occupied 2.0G of RAM; TAIR-Net took 
about 500s to segment the 2341 pictures, which is 
approximately an average of 4.7 pictures per second. The 
time to retrieve a single picture (including the model loading 
time) was 3.5s, and it occupied 5.6G of RAM. 

CONCLUSION 

In this study, we provided a powerful framework using 
deep convolutional autoencoder architecture to overcome the 
bottleneck of searching for large biological phenotype 
datasets. This system contains only reference images from 
Arabidopsis thaliana, which includes many phenotype 
resources. It will be interesting to see if our method can be 
expanded to other species with a large number of phenotypic 
images from mutant or overexpressing lines.  

Taken together, this phenotype retrieval system is 
especially important as it provides further information on the 
correlation between genotype and phenotype. In order to 
provide the user with easier installation without the need to 
deal with dependencies, we deployed the retrieval system by 
Docker which is freely available at http://www.bioinfor.org/ 
tool/TAIR-Seq-Net. The source code can be found at 
https://github.com/wubizhi/Phenotypic-images-retrieval-sys-
tem so the user can set up their own neural network training. 
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BLAST = Basic Local Alignment Search Tool 
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