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Abstract: Cunninghamia lanceolata (C. lanceolata) belongs to Gymnospermae, which are fast-growing
and have desirable wood properties. However, C. lanceolata’s stress resistance is little understood.
To unravel the physiological and molecular regulation mechanisms under environmental stresses
in the typical gymnosperm species of C. lanceolata, three-year-old plants were exposed to simulated
drought stress (polyethylene glycol 8000), salicylic acid, and cold treatment at 4 ◦C for 8 h, 32 h, and
56 h, respectively. Regarding the physiological traits, we observed a decreased protein content and
increased peroxidase upon salicylic acid and polyethylene glycol treatment. Superoxide dismutase
activity either decreased or increased at first and then returned to normal under the stresses. Re-
garding the molecular regulation, we used both nanopore direct RNA sequencing and short-read
sequencing to reveal a total of 5646 differentially expressed genes in response to different stresses, of
which most had functions in lignin catabolism, pectin catabolism, and xylan metabolism, indicating
that the development of stem-differentiating xylem was affected upon stress treatment. Finally, we
identified a total of 51 AP2/ERF, 29 NAC, and 37 WRKY transcript factors in C. lanceolata. The expres-
sion of most of the NAC TFs increased under cold stress, and the expression of most of the WRKY
TFs increased under cold and SA stress. These results revealed the transcriptomics responses in C.
lanceolata to short-term stresses under this study’s experimental conditions and provide preliminary
clues about stem-differentiating xylem changes associated with different stresses.

Keywords: Cunninghamia lanceolate; stem-differentiating xylem; abiotic stress; nanopore long-read
sequencing; transcription factors

1. Introduction

Plants, as sessile organisms, experience constant environmental stresses throughout
their life cycle [1]. Exposure to different stresses may lead to the development of sophisti-
cated mechanisms due to physiological changes and gene transcription allowing the plant
to survive and cope with the stresses [2]. At the beginning of the stress response, stress
perception occurs on the cell surface or cell membrane [3]; then, a primary physiological re-
sponse is stimulated during early stress, such as protein content [4]. Abiotic stress disrupts
the metabolic balance of cells, resulting in excessive ROS, which attacks biomembranes [5],
and then directly affects the malondialdehyde (MDA) content and superoxide dismutase
(SOD) and peroxidase (POD) activities [6–8].

Extreme drought and temperature conditions have long been known to have im-
portant effects on plants [9]. Drought and chemical treatments, such as β-aminobutyric
acid and salicylic acid (SA), can induce plants to generate higher expression of stress-
response genes to protect against future abiotic stress [10–13]. For example, AtLTI30, NFYA5,
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AtNAC72 (RD26), AtNAC19, and AtNAC55 are important drought-response genes in Ara-
bidopsis [14–17]. OsNAC14 and OsTPP3 enhance drought tolerance in Oryza sativa [18,19].
Overexpression of PtrNAC006, PtrNAC007, and PtrNAC120 results in obvious drought
tolerance in Populus trichocarpa [20]. SA, an endogenous signal molecule, involved in
plant growth and development, also participates in the regulation of stress resistance in
plants [21–25]. OsNPR1 and OsWRKY45 play complementary roles in the SA pathway in
response to environmental stresses [26]. In addition to drought and SA treatment, ambient
temperature also regulates growth, flowering, and morphology [27,28]. Cold tolerance can
be increased by a prior exposure to a low, nonfreezing temperature (known as cold acclima-
tion), such as the CBF genes that regulate 414 cold-responsive (COR) genes [29]. IbCBF3
enhances cold and drought tolerance in potato, and OsSMP1 increases cold tolerance in
rice [30,31].

Transcription factors (TFs) play a pivotal role in plant signaling pathways for plant
responses to biotic and abiotic stress, and also play an important role in responses to
internal signals of interacting networks among developmental processes [32–34]. Land
plants present multiple kinds of TFs such as, AP2/ERF, ARF, bHLH, bZIP, C2H2, Dof, HSF,
MYB, NAC, and WRKY [35]. AP2/ERF family factors are mainly classified into four major
subfamilies: DREB (dehydration-responsive element-binding) proteins, ERF (ethylene-
responsive element-binding) proteins, AP2 (APETALA2) and RAV (related to ABI3/VP),
and soloists (a few unclassified factors) [34]. The NAC (NAM, CUC, and ATAF) TFs are
characterized by a highly conserved DNA-binding NAC domain (~150 amino acids) in the
N-terminal region [32]. The first reported NAC proteins are NAM from Petunia hybrida [36]
and the Ataf1/2 and Cuc2 proteins in Arabidopsis [37]. The WRKY TF family of genes
comprises one or two conservative WRKY domains, a WRKYGQK motif at the N-terminus,
and a C2-H2 or C2-HC zinc finger structural domain in the C-terminus [38]. According to
the number of WRKY domains and the characteristics of the zinc finger domains, WRKY is
mainly divided into three categories: I (two WRKY DBDs), II (a single DBD with different
C2–H2 zinc fingers), and III (a single DBD with C2–HC zinc finger [38]; additionally,
some reports have revealed a fourth category (an incomplete WRKY domain without zinc
fingers) [33]. TFs participate not only in stress responses but also in the development of
wood formation. For example, PtrMYB3 and PtrMYB20 of MYB TFs were found to be
involved in the biosynthesis of secondary xylem [39,40]. PtaERF1 has a potential role in
phloem development [41]. Several TFs, including MYB genes, AP2/ERF genes, WRKY
genes, and NAC genes, display significantly up or downregulated expression levels during
the development of wood formation [42].

Our previous study showed that MYB2, MYB21, and MYB092 are differentially ex-
pressed upon compression stress in Cunninghamia lanceolata (Lamb.) Hook (C. lanceo-
lata) [43]. C. lanceolata, as endemic and evergreen coniferous species, is one of the most
important artificial timber forest species in southern China because of its high timber quality
and fast growth [43,44]. C. lanceolata is gradually suffering from increased stress, including
temperature [45], drought stress [46], and autotoxicity caused by allelopathic toxins such as
phenolic acids [47]. However, the physiological and molecular regulation mechanisms un-
der environmental stress are less reported in the typical gymnosperm species of C. lanceolata.
We hypothesized that C. lanceolata, as a gymnosperm plant, has certain tolerance mechanics
in response to different stresses, which could be applied to improve the stress tolerance for
plants. Therefore, we investigated three-year-old C. lanceolata trees that were exposed to
simulated drought stress (20% (w/v) PEG-8000), 5 mM SA, and 4 ◦C cold treatment in order
to reveal the potential response patterns in this gymnosperm species. In this work, we
also revealed the changes in AP2/ERF, NAC, and WRKY TFs upon stress treatment. These
results provide basic clues regarding how to enhance stress tolerance in C. lanceolata.
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2. Results
2.1. Physiological Responses of C. lanceolata under Various Stresses

Simulated drought stress (PEG), SA treatment, and low temperatures stimulated
different changes in the soluble protein content, MDA, POD activity, and SOD activity
across four time points (0, 8, 32, and 56 h) (Figure 1). The PEG treatment decreased the
soluble protein content and SOD activity and increased POD activity after eight hours.
Under the SA treatment, the soluble protein content and SOD gradually decreased, and
POD increased at 32 h. Short-term cold treatment did not cause any significant effects
on the soluble protein content, MDA, or POD, and only significantly increased SOD in
the 8 h cold treatment. In summary, drought stress was found to stimulate significant
changes in the protein content, SOD, and POD. However, the SA and cold treatment only
caused subtle changes in the protein content, SOD, MDA, and POD, which then returned
to normal levels.
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Figure 1. Physiological trait measurements after PEG, SA, and low-temperature treatment for 0 h,
8 h, 32 h, and 56 h in C. lanceolata. (A) the amount of soluble protein content in different treatments;
(B) the amount of MDA content in different treatments; (C) the amount of SOD activity in different
treatments; (D) the amount of POD activity in different treatments. (*, p < 0.05, t-test).

2.2. Constructing Full-Length UniGene Clusters Based on Nanopore Long Reads

We collected the secondary xylem materials upon stress treatment including PEG, SA,
and low-temperature treatments at 0 h, 8 h, 32 h, and 56 h (Figure 2). Three biological
repeats were taken for each treatment for RNA-seq. As C. lanceolata has a large genome
size, its reference sequence and gene annotation are not available. In order to obtain a
high-quality annotated sequence of the reference transcripts, we performed nanopore
DRS to obtain a high-quality long transcript reference sequence. Using nanopore direct
RNA sequencing, 1,031,529 reads were generated. In order to ensure the accuracy of the
sequence, we used RNA-seq reads from Illumina transcriptome data to correct the long
reads before UniGene clustering. Finally, 15,348 genes including 62,558 transcript isoforms
were obtained. Due to the depth of RNA direct sequencing, some low-abundance genes
might have been omitted. The same samples of this project were deeply sequenced using
Illumina RNA-seq. Finally, we obtained a total of 22,026 genes as the reference transcripts.
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Figure 2. Schematic drawing of secondary xylem of C. lanceolata. After PEG, SA, and low-temperature
treatments for 0 h, 8 h, 32 h, and 56 h, the stem-differentiating xylem was scraped with a blade.

2.3. Identification of Differentially Expressed Genes under Stress Treatments

Principal component analysis (PCA) showed that three biological repeats of each treat-
ment were clustered near each other, which reflected the reliability of the high-throughput
sequencing dataset (Figure 3A). The cold treatment dataset was far from the other samples,
indicating that the cold treatment produced more obvious changes than the PEG and SA
treatments. In order to obtain the DEGs under different stresses, we compared different
stress treatments with the control. The genes with standardized expression changes greater
than 2 and p-values less than 0.05 were considered as DEGs. Under the cold treatment, we
identified 1776, 1531, and 1626 DEGs at 8 h, 32 h, and 56 h, respectively (Figure 3B, Table S2).
Under the PEG treatment, 1653, 1524, and 1261 DEGs were identified at 8 h, 32 h, and 56 h,
respectively. Under the SA treatment, 1309, 1243, and 1033 DEGs were identified at 8 h,
32 h, and 56 h, respectively. In this study, TFs were also involved in transcription regulation
under different stresses in C. lanceolata. Among all the DEGs, there were 264 TF genes in
47 families (Figure 3B), including the APETALA2/ethylene-responsive factor (AP2/ERF)
family, the NAC family, and the WRKY family.

A total of 5646 DEGs were found from all the stress treatments. Noticeably, the
GO analysis showed that these DEGs were enriched in the pathway of lignin catabolism,
pyrimidine metabolism, and xyloglucan metabolism (Figure 3C–E).

We further analyzed the dynamic transcriptomes of the four treatment points (0 h,
8 h, 32 h, and 56 h) under three different stress treatments. According to the co-expression
profiles of the differentially expressed genes under the different stresses and treatment
points, they could be divided into 330 clusters. Among these, cluster 2 was the category
with the maximum number of genes, which contained 617 DEGs, showing a rapid up-
regulated expression at 8 h of cold treatment (Figure 4A, Table S3), such as the MYB family
gene TCONS_00011519. The GO enrichment analysis revealed that the genes in cluster 2
were mainly in the phosphoprotein phosphatase and abscisic acid (ABA)-mediated signal
pathway (Figure 4B). The genes of cluster 254 were obviously upregulated at all points
of the cold treatment, but the changes were not obvious under the other types of stress
(Figure 4C; Table S3). The GO terms in cluster 254 were mainly enriched in biological
processes regulated by cell metabolism, the regulation of transcription factor activity, and
circadian rhythm (Figure 4D). The expression profile of cluster 7 increased rapidly at 8 h of
SA treatment, but did not change significantly in the other treatments (Figure 4E, Table S3),
which indicated that these genes were associated with SA response. The GO terms in cluster
7 were mainly enriched in biological processes of transport genes, such as triose phosphate
transport, phosphoglycerate transport, hexose transport, and glucose transport (Figure 4F).
In contrast to the above clusters, the genes in cluster 58 were downregulated under all the
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treatments (Figure 4G, Table S3), while the GO terms in cluster 58 were mainly enriched in
biological processes related to cell recognition and communication (Figure 4H). In summary,
these DEGs might be associated with stress response, which provides preliminary clues for
further investigation of the stress tolerance mechanisms.
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Figure 3. Enrichment analysis of differentially expressed genes and gene ontology under different
stress treatments. (A) principal component analysis for RNA-Seqs; (B) pink, gray, and purple repre-
sent differentially expressed genes under cold, PEG, and SA treatments, respectively; blue color rep-
resents TFs; (C) Differentially expressed genes were enriched in lignin catabolism; (D) Differentially
expressed genes were enriched in xyloglucan metabolism; (E) Differentially expressed genes were
enriched pyrimidine metabolism.

2.4. Phylogenetic and Expression Analysis of the AP2/ERF Family

We identified 51 AP2/ERF members from the UniGene reference transcriptome (Fig-
ure 5A). Using homology alignment, we found one member of the A-1 subfamily, one
member of the A-2 subfamily, four members of the A-4 subfamily, one member of A-5
subfamily, and five members of A-6 subfamily in C. lanceolata (Figure 5A). In C. lanceo-
lata, we found that there was one gene (ed224c4a-e61f-4107-8337-d2e4170696f3) that was
homologous with CBF genes (Figure 5A). The expression level of TINY2 from the A-4
subfamily and RAP2-3 from the A-5 subfamily decreased under the cold, PEG, and SA
stress treatments (Figure 5B). RAP2.10 belonging to the A-5 subfamily was downregulated
under all the treatments, which was validated using RT-qPCR (Figure 5C). Most of the
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AP2/ERF genes with differentially expressed changes were derived from the ERF subfamily.
For example, ERF1-like, ERF003-like, ERF071-like-2, and ERF2-like were all downregulated
under the different stress treatments. Arabidopsis thaliana ABR1 is a member of the ERF B-4
subfamily. In this study, the expression level of ABR1 increased significantly under cold
treatment, but decreased significantly under PEG and SA treatment (32 h and 56 h), which
was consistent with the RT-qPCR verification (Figure 5D).

2.5. Phylogenetic and Expression Analysis of NAC Gene Family Members

NAC family members play important roles in plant resistance [17]. The gene family
analysis revealed 29 members of the NAC family in C. lanceolata (Figure 5E). Most of the
NAC genes were significantly upregulated under the cold treatment (Figure 5F), such
as TCONS_00012497, TCONS_00019374, and TCONS_00030718, which were found to
be homologous with ATAF1. ATAF1 is involved in a broad range of biotic and abiotic
stresses [48,49], which suggests that these genes might be associated with stress response.
The RT-qPCR verification of TCONS_00064908 and TCONS_00017872 confirmed their
significantly increased expression under cold stress and other stresses (Figure 5G,H).

2.6. Phylogenetic and Expression Analysis of WRKY Family Members

As one of the largest families of transcriptional regulators, WRKY TFs can act as
activators or repressors in some homo- and heterodimer combinations [50]. In this study, we
identified 37 WRKY family members in C. lanceolata (Figure 5I). The evolutionary analysis
revealed that TCONS_00030319 was clustered in the same branch with WRKY33, WRKY34,
WRKY26, WRKY2, and WRKY20. TCONS_00030623 and TCONS_00032040 presented
similar homology with WRKY42, WRKY47, and WRKY6. TCONS_00024961 was clustered
in the same branch with Arabidopsis thaliana WRKY14 and WRKY35. From the heatmap
analysis, most of the WRKY TFs were significantly increased under the cold and SA
treatments (Figure 5J). The RT-qPCR verification of TCONS_00032040 and TCONS_00016922
also validated their increased expression under cold and SA stresses (Figure 5K,L).
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Figure 4. Co-expression analysis of differential genes. (A) gene co-expression patterns of cluster 2;
(B) GO enrichment analysis of genes from cluster 2; (C) gene co-expression patterns of cluster 254;
(D) GO enrichment analysis of genes from cluster 254; (E) gene co-expression patterns of cluster 7; (F)
GO enrichment analysis of genes from cluster 7; (G) gene co-expression patterns of cluster 58; (H) GO
enrichment analysis of genes from cluster 58; (A,C,E,G) four clusters of gene co-expression patterns.
The y-axis is the value of log2 measured by normalized gene expression.
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Figure 5. Systematic evolution analysis and differential expression of TFs under stress treatment.
(A–D) evolution tree of AP2 TF family (A); heat map of differentially expressed AP2 family genes
(B); and RT-qPCR verification of RAP2.10 and ABR1 genes of C. lanceolata (C,D); (E–H) evolution
tree of NAC TF family (E); heat map of differentially expressed NAC family genes (F); and RT-qPCR
verification of the NAC036 and NAC100 genes of C. lanceolata (G,H). (I–L) evolution tree of WRKY TF
family (I); heat map of differentially expressed WRKY family genes (J); and RT-qPCR verification of
the WRKY31 and WRKY42 genes of C. lanceolata (K,L). We performed three biological repeats in the
RT-qPCR (standard deviation was used in the evaluation of error bar). Asterisks indicate significant
differences between control and treatments at different times (*, p < 0.05, t-test).
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3. Discussion

In this study, we found that drought stress could stimulate significant changes in
protein content, SOD, and POD. The SA and cold treatments only caused subtle changes
in protein content, SOD, MDA, and POD, which then returned to normal levels. A total
of 5646 DEGs were found under all the stress treatments in C. lanceolata. According to the
co-expression profiles of the differentially expressed genes under the different stresses and
treatment points, they could be divided into 330 clusters. In particular, we identified 264 TF
genes in 47 families among DEGs, including the APETALA2/ethylene-responsive factor
(AP2/ERF) family, the NAC family, and the WRKY family.

3.1. Physiological Response to Drought, Cold, and SA Treatment

Plants constantly monitor and cope with fluctuating environments, such as drought,
cold, salinity stress, and so on [51]. Drought contributed to the increase in soluble protein
and SOD activity and the decrease in POD activity but had no obvious effect on MDA con-
tent in highland barley [52]. In this study, the PEG treatment decreased the soluble protein
content and SOD, and increased POD after eight hours (Figure 1). This result is somewhat
from the results obtained from Larix principis-rupprechtii seedlings [53] and cotton [54]
under drought, which have might been caused due to the differences in these species.

Brassica napus [55] and highland barley [52] have their own specific response charac-
teristics of physiological tolerance in different climatic regions with different temperatures.
In C. lanceolata, the short-term cold treatment did not cause any significant changes in the
soluble protein content, MDA, and POD, and only significantly increased SOD at 8 h of
cold treatment (Figure 1). However, long-term cold treatment is necessary to reveal the
distribution of C. lanceolata in China.

SA and cold treatment only caused short-time changes, which then returned to normal
levels in C. lanceolata. Noticeably, the changes in MDA content were not significant under
these three stresses (Figure 1B). Different plants have developed their own specific stress
adaptation strategies through long-term evolution [7,56]. C. lanceolata, as a gymnosperm
woody forest species, might have developed short-term tolerance to prevent severe oxida-
tive damage through a self-protecting strategy (Figure 6). However, it is worth investigating
long-term stress in further research.

3.2. Differentially Expressed Patterns of Secondary Xylem in Response to Drought, Cold, and
SA Treatments

In addition to PEG, cold, and SA-induced physiological responses, transcriptional regu-
lation of genes was also observed in the secondary xylem of C. lanceolata (Figures 3B and 6).
In this study, we obtained a total of 5646 DEGs under all the stress treatments in the sec-
ondary xylem. These DEGs were enriched in the pathway of lignin catabolism, pyrimidine
metabolism, and xyloglucan metabolism (Figure 3C–E), indicating that stress might affect
the biosynthesis of the secondary xylem of C. lanceolata, which was consistent with our
previous study on Populus trichocarpa [57].

Conifers with strong adaptability to harsh environments generally have large dis-
tribution areas covering multiple climate zones, dominating boreal and cold climates in
the Northern Hemisphere [58,59]. The cold treatment presented more obvious changes
in transcriptional regulation than the PEG and SA treatments (Figure 3B). In Pinus tab-
uliformis, several AP2/ERF members such as PtDREB1 and PtDREB2 were highly cold
responsive [60]. Therefore, we speculate that C. lanceolata has developed a transcriptional
mechanism by which to rapidly respond to short-term cold stress. However, it will be
worth investigating how long-term stress treatment or periodical abiotic stresses affect the
“stress memory” that primes the plant for faster and stronger responses upon subsequent
stress [2].
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Figure 6. Model for stress responses in C. lanceolata.

3.3. TF Expression under Drought, Cold, and SA Stress

In this study, we identified 264 TF genes in 47 families, including the AP2/ERF family,
the NAC family, and the WRKY family, respectively. Among these, 51 AP2/ERF members,
29 NAC members of the NAC family, and 37 WRKY family members were identified
in C. lanceolata (Figures 5 and 6). There was a total of 188 TFs/TRs that significantly
responded to various environmental stresses, including cold, moderate and progressive
drought, and other stresses, in Pinus tabuliformis [60]. PtDREB1 and PtDREB2 are important
cold-responsive AP2/ERF members in Pinus tabuliformis [60]. Temperate plants need cold
acclimation to acquire freezing tolerance after a period of low, nonfreezing temperatures;
for example, the AP2/ERF TFs were found to directly activate cold-responsive (COR) genes
in Arabidopsis [29,52,54]. In C. lanceolata, most AP2/ERF TFs belong to the ERF subfamily
and the DREB subfamily (Figure 5A), and the ERF subfamily members presented more
changes under different stresses (Figure 5A,B). Although there was no CBF subfamilies
that were critical for cold acclimation in Pinus tabuliformis and other conifer genomes [60],
we predicted that one gene (ed224c4a-e61f-4107-8337-d2e4170696f3) was homologous with
CBF genes (Figure 5A).

AP2/ERF, NAC, and several WRKY TFs all participate in “survival of the fittest” [61].
In our study, most of the NAC TFs and WRKY TFs, plus some key AP2/ERF members, were
significantly increased under cold stress (Figure 5B,F,J). It will be interesting to investigate
the cooperative network in AP2/ERF, NAC, and WRKY members in response to different
stresses. Many studies have reported that NAC, AP2/ERF, and WRKY participate in
the lignin synthesis-related pathway [41,42,62–64]. Thus, investigations on the interplay
between growth and multiple types of stress are required in the future to reveal how
C. lanceolata regulates key responsive TFs to balance its growth and stress responses. In
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particular, we found differentially expressed TFs. It is possible that microRNAs also have a
role in this process since TFs comprise most of the miRNA target genes [65]. Small RNA
libraries and degradome libraries [66] can address this possibility in the future.

4. Materials and Methods
4.1. Stress Treatment

C. lanceolata trees were grown in a greenhouse at 25 ◦C with 16 h light/8 h dark
cycles in Fuzhou, China. Three-year-old C. lanceolata were divided into four groups:
(1) control (untreated plants), (2) simulated drought stress treatment with 20% (w/v) PEG-
8000, (3) exogenous 5 mM salicylic acid (SA), and (4) cold treatment in a growth chamber
at 4 ◦C. In order to avoid the effect of circadian rhythms on gene expression, we collected
materials at 24 h intervals. Thus, all the plants under the different stresses were treated
at ~8:00 a.m., and we harvested secondary xylem and leaves after 0 h, 8 h, 32 h, and 56 h.
In total, we selected nine individual plants as one biological repeat for one time interval
for each treatment. In total, three biological repeats were collected. The above materials
were immediately frozen in liquid nitrogen and stored at −80 ◦C until use for subsequent
high-throughput sequencing and real-time quantitative PCR (RT-qPCR). Three biological
repeats were used for sequencing and qPCR.

4.2. Determination of MDA, Protein Content, SOD, and POD

The frozen leaves (0.1g) with three biological repeats were crushed into a fine powder
using a tissue crusher (QIAGEN TissueLyser II, Dusseldorf, Germany), and then suspended
in 0.9 mL PBS solution (0.1 mol/L, pH 7.0) in a volume ratio of 1:9. The homogenate
was centrifuged at 4 ◦C with 4000 rpm for 10 min. The clear supernatant was used for
the determination of MDA, protein content, SOD, and POD using commercial assay kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The protein contents were
detected using a Thermo Fisher Multiskan™ FC microplate photometer and determined
using the total protein assay kit (with the standard BCA method) (Nanjing Jiancheng,
A045-4); the protein concentration was calculated by measuring the absorbance in 562 nm.
We took the protein content changes as physiological traits since the protein content was
used in the determination of SOD and POD activity as described in the total superoxide
dismutase (T-SOD) assay kit (hydroxylamine method) (Nanjing Jiancheng, A001-1) and
the peroxidase assay kit (A084-3, Plant). The activity of MDA was determined using an
MDA assay kit (TBA method, A003-1) [67]. The activity of SOD was determined using a
total superoxide dismutase (T-SOD) assay kit (hydroxylamine method) (Nanjing Jiancheng,
A001-1) [68]. The POD activity was measured using a peroxidase assay kit (A084-3, Plant),
measuring the change in absorbance at 420 nm. Three biological repeats of the physiological
traits were measured for each stress condition.

4.3. Illumina Short-Read Library Preparation and Sequencing

Total RNAs were extracted from secondary xylem materials treated with SA, PEG,
and cold stress at four time points (0 h, 8 h, 32 h, and 56 h) using the RNAprep Pure Plant
Kit (Tiangen, DP441, Beijing, China). RNA quality was determined using a NanoDrop
2000c UV–Vis spectrophotometer (Thermo Fisher, Waltham, MA, USA) followed by 1%
agarose gel electrophoresis. High-quality total RNAs with RNA integrity number (RIN)
values higher than 8 were used in subsequent Illumina RNA-seq, and RT-qPCR. In this
study, we constructed strand-specific RNA-Seq libraries including the control and the
PEG, SA, and low-temperature treatments for 0 h, 8 h, 32 h, and 56 h. The RNA-Seq was
constructed using the deoxyuridine triphosphate (dUTP) method using Illumina Adapter
Sequences (5’ AATGATACGGCGACCACCGA GATCTACACIIIIIIIIAC ACTCTTTCCC-
TACACGACGC TCTTCCGATCT (-) AGATCGGAAGAGCACACGTC TGAACTCCAGT-
CACIIIIII IIATCTCGTATGCCGTCTTCTG CTTG 3’) and the Illumina TruSeq Stranded
mRNA kits. Three biological repeats were sequenced for each treatment based on the Illu-
mina HiSeq platform (Illumina, San Diego, CA, USA) using the 150 bp paired-end strategy.
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4.4. RNA-Seq Analysis Methods

The low-quality reads were removed using the ht2-filter from HTQC [69]. Then, we
used RNA-Seq by Expectation Maximization (RSEM) [70] and empirical analysis of DGE in
R (edgeR) [71] to calculate the gene expression and the differentially expressed genes under
the cold, PEG, and SA stress treatments. In order to assemble unigenes, we generated
Illumina-based reference transcripts using cufflinks (-F 0.5–min-frags-per-transfrag 30–min-
intron-length 30) and cuffmerge with the default parameters [72]. Using differentially
expressed genes as input files, a co-expression analysis of the differentially expressed genes
(DEGs) was performed using the default parameters of the Dirichlet process Gaussian
process mixture model software [73]. DPGP (https://github.com/PrincetonUniversity/
DP_GP_cluster (accessed on 9 September 2019)) performs very well in clustering gene
expression time-series data using an infinite Gaussian process mixture model. After we
obtained the DEGs, we extracted the FPKM values of the DEGs. Then, we used the FPKM
values as inputs for the DPGP to cluster with the default parameters so as to identify similar
expression disjoint clusters.

4.5. Nanopore Direct RNA Sequencing and Bioinformatics Analysis

The genome of C. lanceolata was not available due to its large size. Thus, we also used
long-read sequencing based on nanopore direct RNA-seq (DRS) to generate a high quantity
of unigenes and to improve the integrity of the unigenes. The RNA quality was determined
using a NanoDrop 2000c UV–Vis spectrophotometer (Thermo Fisher, Waltham, MA, USA)
followed by 1% agarose gel electrophoresis, and the high-quality total RNA with RIN values
higher than 8 was used. The total RNAs of the secondary xylem from different stages and
different treatments were mixed into one sample for DRS, and mRNA was isolated using
the Dynabeads mRNA Purification Kit (AMBION, CAT#61006). The DRS library was built
using the SQK-RNA002 Direct RNA Sequencing Kit (Oxford Nanopore Technologies). The
constructed library was loaded onto the R.9.4.1 FlowCell (FLO-MIN106) for sequencing in
a MinION MK 1B sequencer running for 48 h. After sequencing, the electronic raw signals
were identified using Guppy (version 2.3.1) with the default parameters. The transcriptome
data generated by DRS were corrected by lordec-correct (-k 21 -s 3) [74] using RNA-seq
reads to obtain more accurate long transcripts. Finally, reference transcript sequences were
generated using CD-HIT software [75] to remove redundancy.

4.6. Gene Ontology Enrichment Analysis

In this study, the gene ontology (GO) terms of each unigene were obtained using
BLAST2GO [76]. The GO enrichment analysis was implemented using the clusterProfiler
package [77]. Directed graphs of the GO were obtained using Cytoscape’s BINGO plug-
in [78] with the default parameters.

4.7. Evolution Analysis of Transcription Factors

A total of 960 TFs were identified using the iTAK [79] database with the default
parameters. The phylogenetic tree was constructed using MEGAX [80] with the neighbor-
joining (NJ) method with 1000 bootstrap values.

4.8. RT-qPCR Verification

RT-qPCR was used to verify the gene expression patterns of the AP2 family, the NAC
family, and the WRKY family under drought, low-temperature, and SA treatments. Premier
5 was used to design the primers [81]. All the information of each primer pair can be found
in the attachment (Table S1), and the RNA-Seq results were verified using the SYBR® Green
premix ProTaq HS qPCR Kit (Accurate Biotechnology (Human) Co., Ltd., Changsha, China).
The instrument was the Applied Biosystems QuantStudio™ 6 Flex Real-Time PCR System
(Thermo Fisher, Waltham, MA, USA). Ribosomal 5S (TCONS_00059130) was used as a
positive control for the validation of each gene. Three biological repeats were measured for
each stress condition.

https://github.com/PrincetonUniversity/DP_GP_cluster
https://github.com/PrincetonUniversity/DP_GP_cluster
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5. Conclusions

In this study, we investigated the changes in physiological markers in C. lanceolata
upon drought, SA, and cold treatment at different time points (Figure 6). Moreover, we
discovered a total of 5646 DEGs in response to multiple stresses by both nanopore DRS
sequencing and short-read sequencing. The GO terms related to lignin catabolism and xylan
metabolism were enriched. In particular, we identified multiple TFs in response to short-
term stress, which provided candidate genes for the improvement of stress resistance of C.
lanceolata. These results revealed the physiological and transcriptomics responses to short-
term stresses in C. lanceolata and provide preliminary clues about SDX changes associated
with different types of stress. Additionally, our work also provides a molecular direction for
future studies regarding the screening of resistance genes in typical gymnosperm species.
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