第一/通讯作者SCI论文:
1. Jiang Y*#, Wu, G#…Liang P*, 2024.Flow-electrode capacitive separation of organic acid products and recovery of alkali cations after acidic CO2 electrolysis. PNAS. 2024, 121, e2408205121. (共一/共同通讯作者, IF: 9.4).
2. Chu N, Jiang Y*, et al., 2023. Super-fast Charging Biohybrid Batteries through a Power-to-formate-to-bioelectricity Process by Combining Microbial Electrochemistry and CO2 Electrolysis. Angewandte Chemie International Edition. 2023. 62, e202312147. (通讯作者, IF: 16.1).
3. Chu N, Li D, Zeng RJ, Jiang Y*, Liang P*. Microbial electrochemical wastewater refining. Engineering. 2024. DOI: 10.1016/j.eng.2024.07.018. (共同通讯作者,IF=10.1,中国工程院院刊)
4. Chu N, Wang D, Wang H, Liang Q, Chang J, Gao Y, Jiang Y*, et al. Flow-electrode microbial electrosynthesis for increasing production rates and lowering energy consumption. Engineering. 2023. 25, 157-167. (通讯作者,IF=10.1,中国工程院院刊)
5. Chu N, Hao W, Wu Q, Liang Q, Jiang Y*, et al. Microbial electrosynthesis to produce medium chain fatty acids. Engineering. 2022. 16, 141-153. (通讯作者,IF=10.1,中国工程院院刊)
6. Pu Y, Jiang Y*, et al., 2024. Tandem Acidic CO2 Electrolysis coupled with Syngas Fermentation: A Two-stage Process for Producing Medium-Chain Fatty Acids. Environmental Science & Technology.2024;58:7445-56(通讯作者, IF: 10.8)
7. Chu N, Jiang Y*, Zeng RJ, Li D, Liang P. Solid electrolytes for low-temperature carbon dioxide valorization: a review. Environmental Science & Technology. 2024;25:10881-10896. (通讯作者, IF: 10.8)
8. Chu N, Jiang Y*, et al., 2023. Electricity-driven microbial metabolism of carbon and nitrogen: a waste-to-resource solution. Environmental Science & Technology57, 4379–4395.(通讯作者, IF: 10.8)
9. Jiang Y, Chu N, et al. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Research. 2019, 159: 87-94. (IF: 11.4)
10. Jiang Y, May Harold, Lu L, et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Research. 2019, 149: 42-55. (ESI高被引论文,IF: 11.4)
11. Liang, P, Duan, R, Jiang, Y*, Zhang, X, Qiu, Y*, Huang, X*. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research. 2018;141: 1-8.(共同通讯作者,ESI高被引论文,IF: 11.4)
12. Chu, N., Wu, X., Zhao, Z., Zheng, X., Lu, Y., Pu, Y., Wang, Y., Cai, J., Zhang, L., He, X., Li, D., Zeng, R.J., Yu, Y. and Jiang, Y. Biohybrid CO2 electrolysis under external mode: using pure formic acid extracted from CO2 electroreduction for diverse microbial conversion. Fundamental Research, 2024, DOI: 10.1016/j.fmre.2024.1002.1008. (通讯作者,国家基金委英文刊,IF: 5.7)
13. Wang D, Liang Q, Chu N, Zeng RJ, Jiang Y*, 2023. Deciphering mixotrophic microbial electrosynthesis with shifting product spectrum by genome-centric metagenomics. Chemical Engineering Journal. 451, 3139010.(通讯作者, IF: 13.3)
14. Wu, G.-Y., Pu, Y., Wang, Y., Zhang, H., Wu, Q., Zeng, R.J. *, and Jiang, Y*. 2023. Selective recovery of medium-chain fatty acids from secondary fermentation broth by flow-electrode capacitive deionization. Chemical Engineering Journal. 470,144168.(通讯作者, IF: 13.3)
15. Chu N, Liang Q, Hao W, Jiang Y*, et al. Microbial electrochemical sensor for water biotoxicity monitoring. Chemical Engineering Journal. 2021, 404: 127053. (ESI高被引论文,通讯作者, IF: 13.3)
16. Jiang Y, Yang X, Liang P, et al. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. Renewable and Sustainable Energy Reviews. 2018, 81: 292-305.(ESI高被引论文,IF: 16.3)
17. Chu N, Liang Q, Jiang, Y*, et al. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosensors and Bioelectronics. 2020, 150: 111922. (通讯作者, IF: 10.7)
18. Jiang Y, Liang P, Liu P, et al. A novel microbial fuel cell sensor with biocathode sensing element. Biosensors and Bioelectronics. 2017;94:344-350. (IF: 10.7)
19. Chu N, Liang Q, Zhang W, Ge Z, Hao W, Jiang Y*, et al. Waste C1 gases as alternatives to pure CO2 improved the microbial electrosynthesis of C4 and C6 carboxylates. ACS Sustainable Chemistry & Engineering. 2020, 8: 8773-8782. (通讯作者, IF: 7.1)
20. Jiang Y, Lu L, et al. Electrochemical control of redox potential arrests methanogenesis and regulates products in mixed culture electro-fermentation. ACS Sustainable Chemistry & Engineering. 2018, 6: 8650–8658(IF: 7.1)
21. Li Z, Cai J, Gao Y, Zhang L, Liang Q, Hao W, Jiang Y*, Jianxiong Zeng R, 2022. Efficient production of medium chain fatty acids in microbial electrosynthesis with simultaneous bio-utilization of carbon dioxide and ethanol. Bioresource Technology 352, 127101. (通讯作者, IF: 11.4)
22. Chu N, Zhang LX, Hao W, Liang Q, Jiang Y*, et al. Rechargeable microbial fuel cell based on bidirectional extracellular electron transfer. Bioresource Technology. 2021,329:124887. (通讯作者, IF: 9.7)
23. Chu N, Liang Q, Hao W, Jiang Y*, et al. Micro-microbial electrochemical sensor equipped with combined bioanode and biocathode for water biotoxicity monitoring. Bioresource Technology. 2021,326: 124743. (通讯作者, IF: 9.7)
24. Jiang Y, Liang P, Zhang C, et al. Enhancing the response of microbial fuel cell based toxicity sensors to Cu (II) with the applying of flow-through electrodes and controlled anode potentials. Bioresource technology. 2015;190:367-72. (IF:9.7)
25. Jiang Y, Chu N, et al. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide. Bioresource technology. 2020, 295: 122266. (IF: 9.7)
26. Jiang Y, Zeng RJ. Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design—a review. Bioresource technology. 2018, 269: 503-512. (IF: 9.7)
27. Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: mechanism and application.Bioresource technology. 2019, 271: 439-448. (ESI高被引论文,IF: 9.7)
28. Jiang Y, Liang P, Zhang C et al. Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells. Applied Energy. 2016;165:670-5. (IF:10.1)
29. Jiang Y, Chu N, et al. Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode. Energy Conversion and Management. 2020, 204: 112285. (IF: 9.9)
30. Jiang Y, Chu N, et al. Submersible probe type microbial electrochemical sensor for volatile fatty acids monitoring in the anaerobic digestion process.Journal of Cleaner Production. 2019, 232: 1371-1378. (IF: 9.7)
31. Pu Y, Wu G, Wang Y, Wu X, Chu N, Zeng RJ, et al. Surface coating combined with in situ cyclic voltammetry to enhance the stability of gas diffusion electrodes for electrochemical CO(2) reduction. Science of the Total Environment 2024; 918: 170758.(IF: 8.2)
32. Jiang Y, Liang Q, et al. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. Science of the Total Environment. 2020, 741: 140198. (IF: 8.2)
33. Gao, Y., Li, Z., Cai, J., Zhang, L., Liang, Q., Jiang, Y*., Zeng, R.J., 2022. Metal nanoparticles increased the lag period and shaped the microbial community in slurry-electrode microbial electrosynthesis. Science of the Total Environment. 838, 156008.(通讯作者, IF: 8.2)
34. Chu N, Cai J, Li Z, Gao Y, Liang Q, Hao W, Liu P, Jiang Y*, Zeng RJ. Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors. Chemosphere. 2022,286,131725. (通讯作者, IF: 8.1)
35. Jiang Y, Liang P, Huang, X, et al. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere. 2018, 203: 21-25.(IF: 8.1)
36. Wang S, Qi X, Jiang Y*, Liu P, Hao W, Han J, Liang P*. An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor. Frontiers of Environmental Science & Engineering. 2022, 16(8): 97. (通讯作者, IF=6.1)
37. Liang Q, Gao Y, Li Z, Cai J, Chu N, Hao W, Jiang Y*, Zeng RJ. Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems. Frontiers of Environmental Science & Engineering. 2022,16:42. (通讯作者, IF=6.1)
38. Cai J, Wang Y, Al-Dhabi NA, Wu G, Pu Y, Tang W, et al. Refining microbial potentiometric sensor performance with unique cathodic catalytic properties for targeted application scenarios. Environmental Research 2024; 247: 118285. (通讯作者, IF= 7.7)
39. Jiang Y, Su M, Zhang Y, et al. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. International Journal of Hydrogen Energy. 2013;38:3497-502.(IF: 8.1)
40. Jiang Y, Liang P, Liu P, et al. A cathode-shared microbial fuel cell sensor array for water alert system. International Journal of Hydrogen Energy. 2017;42:4342-8. (IF: 8.1)
41. Jiang Y, Liang P, Liu P, et al. Enhancement of the sensitivity of a microbial fuel cell sensor by transient-state operation. Environmental Science: Water Research & Technology. 2017;3 (3):472-479. (IF: 3.5)
42. Jiang Y, Liang P, Liu P, et al. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter.International Journal of Molecular Sciences. 2016;17:1392. (IF: 4.9)
43. Jiang Y, Su M, Li D. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells–microbial electrolysis cell (MFCs–MEC) coupled system. Applied Biochemistry and Biotechnology. 2014;172:2720-31. (IF: 3.1)
44. Cai J, Huang H, Li Z, Gao Y, Liang Q, Chen X, Chu N, Hao W, Wang D, Jiang Y*, Zeng RJ, 2022. A rechargeable microbial electrochemical sensor for water biotoxicity monitoring. Biosensors and Bioelectronics: X 10. 100132
第一/通讯作者中文论文:
(2)褚娜,蒋永*,曾建雄.微生物电合成生产中链脂肪酸的基本原理及研究进展.生物技术通报. 2021, 37(5):237-247.
(2)蒋永,苏敏,张尧,陶勇,李大平.生物电化学系统还原二氧化碳同时合成甲烷和乙酸.应用与环境生物学报. 2013,19(05):833-837.