[9].赵宇轩,魏理晖,曹光球,林开敏,马祥庆,帅鹏. 密度效应对不同杉木无性系幼龄期生长影响的研究 [J]. 分子植物育种,2025.
[8].魏理晖,叶小鹏,陈志云,何宗明,马祥庆,帅鹏. 密度及修枝对幼林杉木节子伤口愈合的影响 [J]. 森林与环境学报,2024,44(6).
[7].张丽霞,曹光球,林开敏,马祥庆,帅鹏. 5种杉木幼林不同龄期生长特性比较 [J]. 福建农业学报,2022,37(7):904−911.
[6].高文杰,刘娇,马祥庆,帅鹏.杉木 NAC 基因家族基因的鉴定及生物信息学分析 [J].中南林业科技大学学报,2022,42(02):108-118.
[5].刘娇,帅鹏. HD-ZIP转录因子响应病菌与非生物胁迫研究进展 [J]. 福建农业学报,2021,36(1):124−134.
[4].曾铭, 高文杰, 帅鹏, 马祥庆. (2019). 杉木WRKY基因家族成员鉴定及在低磷胁迫下的表达. 东北林业大学学报 47(4), 12-20.
[3].高文杰, 陈敏健, 刘爱琴, 帅鹏. (2019). 木本植物EMS诱变育种研究进展. 分子植物育种 17(20):6768-6774.
[2].黄志明, 帅鹏. (2017). 毛竹4个miRNA在胚芽萌发过程的表达响应研究. 热带作物学报 38(11), 2121-2118.
[1].张洲嘉,帅鹏,苏艳艳,尹伟伦,夏新莉 (2014) 胡杨PeECT8基因的克隆及功能分析.植物生理学报 50(10): 1501-1509.
[11].Li M,Ye X,Zhao Z,Zeng Y,Huang C, Ma X, Shuai P. Identification of miRNAs and Their Targets in Cunninghamia lanceolata Under Low Phosphorus Stress Based on Small RNA and Degradome Sequencing,.Int. J. Mol. Sci. 2025, 26(8), 3655.
[10].Zhao, Y.; Huang, S.; Wei, L.; Li, M.; Cai, T.; Ma, X.; Shuai, P. ClNAC100 Is a NAC Transcription Factor of Chinese Fir in Response to Phosphate Starvation. Int. J. Mol. Sci. 2023, 24, 10486.
[9].Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YJ. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol. 2023 ;24(1):3.
[8].Huang, S.; Zhang, L.; Cai, T.; Zhao, Y.; Liu, J.; Wu, P.; Ma, X.; Shuai, P. Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. Plants 2022, 11, 2036.
[7]. Shuai P, Su Y, Liang D, Xia X, Yin W (2016) Identification of phasiRNAs and their drought-responsiveness in Populus trichocarpa. FEBS Letters DOI: 10.1002/1873-3468.12419, 590(20): 3616-3627
[6]. Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. Journal of Experimental BotanyDOI:10.1093/jxb/eru256, 65:4975-4983
[5]. Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.BMC GenomicsDOI:10.1186/1471-2164-14-233, 14: 233
[4]. Lin YJ, Chen H, Li Q, Li W, Wang JP, Shi R, Tunlaya-Anukit S,Shuai P, Wang Z, Ma H, Li H, Sun YH, Sederoffd RR, and Chiang VL (2017)Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. PNAS DOI:10.1073/pnas.1714422114, 114, 45: 9722-9729
[3]. Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Tang S, Wang Y, Yang L, Wang J, Yin W, Xia X (2014) Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genetics DOI: 10.1186/1471-2156-15-S1-S9, 15(Suppl 1):S9
[2]. Tang S, Dong Y, Liang D, Zhang Z, Ye CY, Shuai P, Han X, Zhao Y, Yin W, Xia X (2015) Analysis of the drought stress-responsive transcriptome of black cottonwood (Populus trichocarpa) using deep RNA sequencing. Plant Molecular Biology Reporter DOI: 10.1007/s111 05-014-0759-4
[1]. Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany DOI: 10.1093/jxb/erq217, 61:4011–4019